Flex Docs (Work-In-Progress | Last Updated: 12/07)
  • Current Landscape
  • Welcome to Flex
  • Overview
    • Infrastructure for the New Web
    • The Values of the Flex Ecosystem
  • Protocol
    • Flex Validator Nodes
      • Data and Validation Layer
      • Rewards Layer
      • Audit Layer
      • Sentinel Layer
      • Prediction Layer
      • Getting Started
        • Propagation into the Validation Layer
        • Transaction Pool Generation
        • Transaction Weight Assignment
        • Epoch Score Calculation
        • Reward Distribution
        • Reward Claiming
        • Epoch Reward Pool Mechanics
    • Proof-of-Collaboration (PoCol)
      • PoCol Governance using FLEXE
      • Actors in the Flex Ecosystem
    • Flex Commons
      • Code Tokenization
      • Code Registry and Indexing
      • Code Versioning and Forking
      • Code Licensing and Royalties
      • Code Marketplaces and Auctions
      • Code Search and Discovery
      • Flex Commons Governance using FLEXE
    • Ecosystem Tokens' Multi-Staking
    • Technical Roadmap for the Flex Ecosystem
      • Flex Virtual Machine (FVM)
      • Flex SDCK
      • re:Flex Smart Contract Language
    • Flex Improvement Proposal (FIP)
    • Flex Portal: Your Gateway to Web3
  • Contribute to the Ecosystem
    • Strategists: Roles and Contributions
    • Developers and Projects
  • Governance and Utility
    • Introducing the FLEXE Token (coming soon)
    • Flexonomics (coming soon)
    • How to get FLEXE tokens (coming soon)
      • Use the faucet (coming soon)
      • Run a node (coming soon)
  • Quicklinks
    • Supported Social Media
    • Official Website
  • Legal
    • Terms of Service
    • Privacy Policy
    • Digital Asset Disclosure (coming soon)
Powered by GitBook
On this page
  1. Protocol
  2. Flex Validator Nodes

Sentinel Layer

Flex is a community-owned platform that rapidly boosts dApp user growth, ensuring the value generated directly benefits the Flex community.

PreviousAudit LayerNextPrediction Layer

Last updated 10 months ago

This layer utilizes machine learning and real-time analytics to monitor network health and optimize performance.

Node health classification:

Node health is now classified using a multi-factor model:

H(v)=w1​U(v)+w2​P(v)+w3​S(v)+w4​N(v)H(v)=w 1 ​ U(v)+w 2 ​ P(v)+w 3 ​ S(v)+w 4 ​ N(v)H(v)=w1​U(v)+w2​P(v)+w3​S(v)+w4​N(v)

where:

  • U(v) is the uptime of validator v

  • P(v) is the performance score of validator v

  • S(v) is the stake of validator v

  • N(v) is the network contribution of validator v

  • w1, w2, w3 and w4 are weight coefficients

Anomaly detection:

This sentinel layer employs an Isolation Forest algorithm to detect anomalies in validator behavior:

Copy codefrom sklearn.ensemble import IsolationForest

def detect_anomalies(validator_metrics):
    clf = IsolationForest(contamination=0.1, random_state=42)
    clf.fit(validator_metrics)
    return clf.predict(validator_metrics)

We invite developers, researchers, and enthusiasts to work with our contributors for this section.

Start contributing here.